3. Vectors and Matrices: Exercise Solutions#

\[ % Latex macros \newcommand{\mat}[1]{\begin{pmatrix} #1 \end{pmatrix}} \newcommand{\p}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\b}[1]{\boldsymbol{#1}} \newcommand{\w}{\boldsymbol{w}} \newcommand{\x}{\boldsymbol{x}} \newcommand{\y}{\boldsymbol{y}} \]
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

1) Determinant and eigenvalues#

  1. For a 2x2 matrix \(A = \left(\begin{array}{cc} a & b\\ c & d \end{array}\right)\), let us verify that \(\det A = ad - bc\) in the case graphically shown below (\(a, b, c, d\) are positive).

A = np.array([[4, 1], [2, 3]])
plt.plot([0, 1, 1, 0, 0], [0, 0, 1, 1, 0])
plt.plot([0, A[0,0]+A[0,1], A[0,0]+A[0,1], 0, 0], 
         [0, 0, A[1,0]+A[1,1], A[1,0]+A[1,1], 0])
plt.plot([A[0,0], A[0,0]+A[0,1], A[0,0]+A[0,1], A[0,0], A[0,0]], 
         [0, 0, A[1,0], A[1,0], 0])
plt.plot([0, A[0,1], A[0,1], 0, 0], 
         [A[1,1], A[1,1], A[1,0]+A[1,1], A[1,0]+A[1,1], A[1,1]])
plt.plot([0, A[0,0], A[0,0]+A[0,1], A[0,1], 0], 
         [0, A[1,0], A[1,0]+A[1,1], A[1,1], 0])
plt.axis('equal')
plt.text(A[0,0], A[1,0], '(a,c)')
plt.text(A[0,1], A[1,1], '(b,d)')
plt.text(A[0,0]+A[0,1], A[1,0]+A[1,1], '(a+b,c+d)');
_images/ccd79dfa063c31d530538328158a032ea90b42b1bfd07d77dfa3e8003c0d80a9.png

A unit square is transformed into a parallelogram. Its area \(S\) can be derived as follows:
Large rectangle: \( S_1 = (a+b)(c+d) = ac+ad+bc+bd \)
Small rectangle: \( S_2 = bc \)
Bottom/top triangle: \( S_3 = ac/2 \)
Left/right triangle: \( S_4 = bd/2 \)
Parallelogram: $\( S = S_1 - 2S_2 - 2S_3 - 2S_4 = ad - bc\)$

  1. The determinant equals the product of all eigenvalues. Verify this numerically for multiple cases and explain intuitively why that should hold.

#A = np.array([[1, 2], [3, 4]])
m = 4
A = np.random.randn(m,m)
print(A)
lam, V = np.linalg.eig(A)
print('eigenvalues = ', lam)
print('product = ', np.product(lam))
det = np.linalg.det(A)
print('detrminant = ', det)
[[ 1.63576677  0.42671354  0.4937175  -0.9112595 ]
 [-0.28194459 -0.12399718 -1.27876963 -1.04242113]
 [-0.16037312 -0.38660328 -0.68556304  0.57636645]
 [ 0.59694172  1.28631044  0.71067808 -1.03811757]]
eigenvalues =  [ 1.42772061+0.j        -1.24920851+0.j        -0.19521156+0.9478988j
 -0.19521156-0.9478988j]
product =  (-1.670480637422472-1.125848800514746e-19j)
detrminant =  -1.6704806374224692

The determinant represents how much the volume in the original space is expanded or shrunk.

The eigenvalues represent how much a segment in the direction of eigen vector is scaled in length.

Therefore, the producs of all eigenvalues should equal to the determinant.

2) Eigenvalues and matrix product#

  1. Make a random (or hand-designed) \(m\times m\) matrix \(A\). Compute its eigenvalues and eigenvectors. From a random (or your preferred) initial point \(\b{x}\), compute \(A\b{x}, A^2\b{x}, A^3\b{x},...\) and visualize the points. Then characterize the behavior of the points with respect the eigenvalues and eigenvectors.

m = 4
A = np.random.randn(m,m)
print('A = ', A)
L, V = np.linalg.eig(A)
print('eigenvalues = ', L)
#print('eigenvectors =\n', V)
A =  [[ 0.85231274 -1.01314296 -2.39056     0.03678073]
 [ 1.06022293  0.77047991  2.31970048 -0.20521   ]
 [ 0.18942147 -0.84905095 -0.44907217  1.28829382]
 [ 0.8196681  -0.49868734  0.15495016 -0.04887422]]
eigenvalues =  [ 0.63568913+1.86718j  0.63568913-1.86718j  0.74803676+0.j
 -0.89456877+0.j     ]
# take a point and see how it moves
K = 20  # steps
x = np.zeros((m, K))
x[:,0] = np.random.randn(m) # random initial state
for k in range(K-1):
    x[:,k+1] = A @ x[:,k]  # x_{k+1} = A x_k
# plot the trajectory
plt.plot( x.T, 'o-')
plt.xlabel("k"); plt.ylabel("$x_i$");
_images/f82f06d8d08a503987dcbf2d5b61e10576a5c3e114ea2a2b83416c5dcf3911db.png
plt.plot( x[0,:], x[1,:])
[<matplotlib.lines.Line2D at 0x114fd0140>]
_images/d066e8a96119573bde034690665fdcb94d9ce9b2ee7264cad020c0a962f66780.png
  1. Do the above with several different matrices

A = np.random.randn(m,m)
print('A = ', A)
L, V = np.linalg.eig(A)
print('eigenvalues = ', L)
for k in range(K-1):
    x[:,k+1] = A @ x[:,k]  # x_{k+1} = A x_k
# plot the trajectory
plt.plot( x.T, 'o-')
plt.xlabel("k"); plt.ylabel("$x_i$");
A =  [[-0.5183011   0.15239654  0.10677094 -1.89289684]
 [ 0.65966243  2.06196007  0.43185957 -0.77617869]
 [ 1.36881221 -0.53076824  0.41885163  0.03735828]
 [-1.17427283  0.18139766  1.10501988 -0.7245754 ]]
eigenvalues =  [-2.43311145+0.j          0.79505623+1.00307954j  0.79505623-1.00307954j
  2.08093418+0.j        ]
_images/9431ad2ed7ef4b87d0ad84ee365f677a3287fceec730dec61e8ecdd26a4cb8f8.png

3) Principal component analysis#

Read in the “digits” dataset, originally from sklearn.

data = np.loadtxt("data/digits_data.txt")
target = np.loadtxt("data/digits_target.txt", dtype='int64')
m, n = data.shape
print(m, n)
1797 64

The first ten samples look like these:

plt.figure(figsize=(10,4))
for i in range(10):
    plt.subplot(1,10,i+1)
    plt.imshow(data[i].reshape((8,8)))
    plt.title(target[i])
    plt.axis('off')
_images/e8c25a2be478200705560ddf84b2c5ab9b45ef8ab3e4a510f105a2c66dd54e1d.png
  1. Compute the principal component vectors from all the digits and plot the eigenvalues from the largest to smallest.

# subtract the mean
Xm = np.mean(data, axis=0)
X = data - Xm
#C = np.cov(X, rowvar=False)
C = (X.T @ X)/(m-1)
lam, V = np.linalg.eig(C)
# columns of V are eigenvectors
# it is not guaranteed that the eigenvalues are sorted, so sort them
ind = np.argsort(-lam)  # indices for sorting, descending order
L = lam[ind]
V = V[:,ind]
print('L, V = ', L, V)
plt.plot(L);
L, V =  [1.79006930e+02 1.63717747e+02 1.41788439e+02 1.01100375e+02
 6.95131656e+01 5.91085249e+01 5.18845391e+01 4.40151067e+01
 4.03109953e+01 3.70117984e+01 2.85190412e+01 2.73211698e+01
 2.19014881e+01 2.13243565e+01 1.76367222e+01 1.69468639e+01
 1.58513899e+01 1.50044602e+01 1.22344732e+01 1.08868593e+01
 1.06935663e+01 9.58259779e+00 9.22640260e+00 8.69036872e+00
 8.36561190e+00 7.16577961e+00 6.91973881e+00 6.19295508e+00
 5.88499123e+00 5.15586690e+00 4.49129656e+00 4.24687799e+00
 4.04743883e+00 3.94340334e+00 3.70647245e+00 3.53165306e+00
 3.08457409e+00 2.73780002e+00 2.67210896e+00 2.54170563e+00
 2.28298744e+00 1.90724229e+00 1.81716569e+00 1.68996439e+00
 1.40197220e+00 1.29221888e+00 1.15893419e+00 9.31220008e-01
 6.69850594e-01 4.86065217e-01 2.52350432e-01 9.91527944e-02
 6.31307848e-02 6.07377581e-02 3.96662297e-02 1.49505636e-02
 8.47307261e-03 3.62365957e-03 1.27705113e-03 6.61270906e-04
 4.12223305e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00] [[ 0.          0.          0.         ...  1.          0.
   0.        ]
 [ 0.01730947  0.01010646 -0.01834207 ...  0.          0.
   0.        ]
 [ 0.22342883  0.04908492 -0.12647554 ...  0.          0.
   0.        ]
 ...
 [ 0.08941847 -0.17669712 -0.23208416 ...  0.          0.
   0.        ]
 [ 0.03659771 -0.01945471 -0.16702656 ...  0.          0.
   0.        ]
 [ 0.0114685   0.00669694 -0.03480438 ...  0.          0.
   0.        ]]
_images/850f427149a407c45ae7820e3a471c5e2d01c4ce262d789cffffdfee26d2ea1b.png
# use SVD
U, S, Vt = np.linalg.svd(X, full_matrices=False)
# columns of V, or rows of Vt are eigenvectors
L = S**2/(m-1)  # eigenvalues
print('L, Vt = ', L, Vt)
plt.plot(L);
L, Vt =  [1.79006930e+02 1.63717747e+02 1.41788439e+02 1.01100375e+02
 6.95131656e+01 5.91085249e+01 5.18845391e+01 4.40151067e+01
 4.03109953e+01 3.70117984e+01 2.85190412e+01 2.73211698e+01
 2.19014881e+01 2.13243565e+01 1.76367222e+01 1.69468639e+01
 1.58513899e+01 1.50044602e+01 1.22344732e+01 1.08868593e+01
 1.06935663e+01 9.58259779e+00 9.22640260e+00 8.69036872e+00
 8.36561190e+00 7.16577961e+00 6.91973881e+00 6.19295508e+00
 5.88499123e+00 5.15586690e+00 4.49129656e+00 4.24687799e+00
 4.04743883e+00 3.94340334e+00 3.70647245e+00 3.53165306e+00
 3.08457409e+00 2.73780002e+00 2.67210896e+00 2.54170563e+00
 2.28298744e+00 1.90724229e+00 1.81716569e+00 1.68996439e+00
 1.40197220e+00 1.29221888e+00 1.15893419e+00 9.31220008e-01
 6.69850594e-01 4.86065217e-01 2.52350432e-01 9.91527944e-02
 6.31307848e-02 6.07377581e-02 3.96662297e-02 1.49505636e-02
 8.47307261e-03 3.62365957e-03 1.27705113e-03 6.61270906e-04
 4.12223305e-04 1.14286697e-30 1.14286697e-30 1.12542605e-30] [[ 1.77484909e-19  1.73094651e-02  2.23428835e-01 ...  8.94184677e-02
   3.65977111e-02  1.14684954e-02]
 [-3.27805401e-18  1.01064569e-02  4.90849204e-02 ... -1.76697117e-01
  -1.94547053e-02  6.69693895e-03]
 [ 1.68358559e-18 -1.83420720e-02 -1.26475543e-01 ... -2.32084163e-01
  -1.67026563e-01 -3.48043832e-02]
 ...
 [ 0.00000000e+00  5.01431234e-17 -9.75867742e-17 ... -6.93889390e-17
   5.55111512e-17 -3.46944695e-18]
 [ 0.00000000e+00  4.27173158e-16 -3.24255744e-16 ...  1.11022302e-16
  -5.55111512e-17  1.38777878e-16]
 [-1.00000000e+00  1.68983002e-17 -5.73338351e-18 ... -8.66631300e-18
   1.57615962e-17 -4.07058917e-18]]
_images/850f427149a407c45ae7820e3a471c5e2d01c4ce262d789cffffdfee26d2ea1b.png
  1. Visualize the principal vectors as images.

plt.figure(figsize=(8,8))
for i in range(n):
    plt.subplot(8,8,i+1)
    plt.imshow(V[:,i].reshape((8,8)))
    #plt.imshow(Vt[i].reshape((8,8)))
    plt.axis('off')
_images/708352ece4d0302117d37762bda33cf31ee16822b54234e24a1b5ff8f6c8f57e.png
  1. Scatterplot the digits in the first two or three principal component space, with different colors/markers for digits.

# columns of V are eigenvectors
Z = X @ V
plt.scatter(Z[:,0], Z[:,1], c=target, marker='.')
plt.setp(plt.gca(), xlabel='PC1', ylabel='PC2')
plt.axis('square');
_images/2e7c6614c566b383a75a036105000d596d2a2584c3ce8fd5f5ff93e1b39aa14a.png
plt.figure(figsize=(8,8))
plt.scatter(Z[:,0], Z[:,1], c=target, marker='.')
# add labels to some points
for i in range(100):
    plt.text(Z[i,0], Z[i,1], str(target[i]))
plt.setp(plt.gca(), xlabel='PC1', ylabel='PC2');
_images/886f36b421582e12734ab13866d7294e255ba0f6794bf0a30818b5e147d0898f.png
# In 3D
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(projection='3d')
ax.scatter(Z[:,0], Z[:,1], Z[:,2], c=target, marker='o')
# add labels to some points
for i in range(200):
    ax.text(Z[i,0], Z[i,1], Z[i,2], str(target[i]))
plt.setp(plt.gca(), xlabel='PC1', ylabel='PC2', zlabel='PC3');
_images/9cd587d80ab363c83208934bedea474833ae02e255cd1973070eb471d3a84fd1.png
  1. Take a sample digit, decompose it into principal components, and reconstruct the digit from the first \(m\) components. See how the quality of reproduction depends on \(m\).

K = 8  # PCs to be considered
i = np.random.randint(m) # pick a random sample
plt.figure(figsize=(10,4))
plt.subplot(1,K,1)
plt.imshow(data[i].reshape((8,8))) # original
plt.title(target[i])
plt.axis('off')
for k in range(1,K):  # number of PCs
    Xrec = Xm + V[:,:k] @ Z[i,:k] 
    plt.subplot(1,K,k+1)
    plt.imshow(Xrec.reshape((8,8))) # reconstructed
    plt.title(k)
    plt.axis('off')
_images/3e030d45577ee0d54af4d26d207ac655dce1990d9c5a713aa7d4809254b16787.png